Current chart-specific tasks, such as chart question answering, chart parsing, and chart generation, are typically studied in isolation, preventing models from learning the shared semantics that link chart generation and interpretation. We introduce CycleChart, a consistency-based learning framework for bidirectional chart understanding and generation. CycleChart adopts a schema-centric formulation as a common interface across tasks. We construct a consistent multi-task dataset, where each chart sample includes aligned annotations for schema prediction, data parsing, and question answering. To learn cross-directional chart semantics, CycleChart introduces a generate-parse consistency objective: the model generates a chart schema from a table and a textual query, then learns to recover the schema and data from the generated chart, enforcing semantic alignment across directions. CycleChart achieves strong results on chart generation, chart parsing, and chart question answering, demonstrating improved cross-task generalization and marking a step toward more general chart understanding models.
翻译:当前针对图表的特定任务,如图表问答、图表解析和图表生成,通常被孤立研究,阻碍了模型学习连接图表生成与解释的共享语义。我们提出CycleChart,一种基于一致性的双向图表理解与生成学习框架。CycleChart采用以模式为中心的表述作为跨任务的通用接口。我们构建了一个一致的多任务数据集,其中每个图表样本包含模式预测、数据解析和问答的对齐标注。为学习跨方向的图表语义,CycleChart引入了生成-解析一致性目标:模型从表格和文本查询生成图表模式,随后学习从生成的图表中恢复模式和数据,从而强制实现跨方向的语义对齐。CycleChart在图表生成、图表解析和图表问答任务上取得了优异结果,展现出改进的跨任务泛化能力,标志着向更通用的图表理解模型迈出重要一步。