从大规模基础模型中转移视觉语言知识以用于视频识别已经被证明是有效的。为了弥合领域差距,额外的参数模块被添加以捕捉时间信息。然而,随着专用参数数量的增加,零样本泛化能力逐渐减弱,使得现有的方法在零样本泛化和闭集性能之间需要进行权衡。在本文中,我们提出了MoTE,一个新颖的框架,能够在一个统一的模型中平衡泛化和专门化。我们的方法通过调整一组时间专家的混合体来学习多个任务视角,并适应不同程度的数据拟合。为了最大程度地保留每个专家的知识,我们提出了“权重合并正则化”,它在权重空间中对专家的合并过程进行正则化。此外,通过时间特征调制来正则化测试期间时间特征的贡献。我们在零样本和闭集视频识别任务之间实现了良好的平衡,并在多个数据集(包括Kinetics-400 & 600、UCF和HMDB)上获得了最先进的或具有竞争力的结果。代码已发布在:https://github.com/ZMHH-H/MoTE。

成为VIP会员查看完整内容
13

相关内容

【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【CVPR2024】VidLA: 大规模视频-语言对齐
专知会员服务
20+阅读 · 2024年3月31日
【CVPR2024】VideoMAC: 视频掩码自编码器与卷积神经网络
专知会员服务
17+阅读 · 2024年3月4日
【NeurIPS2023】多样化的时空感知用于视频域泛化
专知会员服务
21+阅读 · 2023年10月30日
【NeurIPS2023】PAXION:在视频-语言基础模型中修补动作知识
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
专知会员服务
26+阅读 · 2021年10月20日
【AAAI2023】用于图对比学习的谱特征增强
专知
18+阅读 · 2022年12月11日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【AAAI2021】自监督对应学习的对比转换
专知
12+阅读 · 2020年12月11日
【ICML2020】对比多视角表示学习
专知
19+阅读 · 2020年6月28日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
40+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
A Survey of Large Language Models
Arxiv
429+阅读 · 2023年3月31日
Arxiv
71+阅读 · 2023年3月26日
Arxiv
157+阅读 · 2023年3月24日
Arxiv
22+阅读 · 2023年3月17日
VIP会员
相关VIP内容
【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【CVPR2024】VidLA: 大规模视频-语言对齐
专知会员服务
20+阅读 · 2024年3月31日
【CVPR2024】VideoMAC: 视频掩码自编码器与卷积神经网络
专知会员服务
17+阅读 · 2024年3月4日
【NeurIPS2023】多样化的时空感知用于视频域泛化
专知会员服务
21+阅读 · 2023年10月30日
【NeurIPS2023】PAXION:在视频-语言基础模型中修补动作知识
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
专知会员服务
26+阅读 · 2021年10月20日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
40+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员