We present a system for learning generalizable hand-object tracking controllers purely from synthetic data, without requiring any human demonstrations. Our approach makes two key contributions: (1) HOP, a Hand-Object Planner, which can synthesize diverse hand-object trajectories; and (2) HOT, a Hand-Object Tracker that bridges synthetic-to-physical transfer through reinforcement learning and interaction imitation learning, delivering a generalizable controller conditioned on target hand-object states. Our method extends to diverse object shapes and hand morphologies. Through extensive evaluations, we show that our approach enables dexterous hands to track challenging, long-horizon sequences including object re-arrangement and agile in-hand reorientation. These results represent a significant step toward scalable foundation controllers for manipulation that can learn entirely from synthetic data, breaking the data bottleneck that has long constrained progress in dexterous manipulation.
翻译:我们提出一个完全从合成数据中学习可泛化手-物体追踪控制器的系统,无需任何人类演示。我们的方法有两个关键贡献:(1) HOP(手-物体规划器),能够合成多样化的手-物体轨迹;(2) HOT(手-物体追踪器),通过强化学习和交互模仿学习实现合成到物理的迁移,提供一个以目标手-物体状态为条件的可泛化控制器。我们的方法可扩展到不同物体形状和手部形态。通过大量评估,我们证明该方法能使灵巧手追踪具有挑战性的长时程序列,包括物体重排和敏捷的手内重定向。这些成果标志着向可扩展的操控基础控制器迈出了重要一步,此类控制器能够完全从合成数据中学习,从而打破长期制约灵巧操控领域发展的数据瓶颈。