Generating realistic 3D faces is of high importance for computer graphics and computer vision applications. Generally, research on 3D face generation revolves around linear statistical models of the facial surface. Nevertheless, these models cannot represent faithfully either the facial texture or the normals of the face, which are very crucial for photo-realistic face synthesis. Recently, it was demonstrated that Generative Adversarial Networks (GANs) can be used for generating high-quality textures of faces. Nevertheless, the generation process either omits the geometry and normals, or independent processes are used to produce 3D shape information. In this paper, we present the first methodology that generates high-quality texture, shape, and normals jointly, which can be used for photo-realistic synthesis. To do so, we propose a novel GAN that can generate data from different modalities while exploiting their correlations. Furthermore, we demonstrate how we can condition the generation on the expression and create faces with various facial expressions. The qualitative results shown in this paper are compressed due to size limitations, full-resolution results and the accompanying video can be found in the supplementary documents. The code and models are available at the project page: https://github.com/barisgecer/TBGAN.
翻译:生成现实的 3D 面孔对于计算机图形和计算机视觉应用非常重要。 一般来说, 3D 面部生成的研究围绕面部表面的线性统计模型进行。 尽管如此, 这些模型无法忠实地代表面部纹理或面部正常, 这对于光现实面部合成非常重要。 最近, 事实证明, 生成高品质的面部纹理网络( GANs) 可用于生成高质量的面部纹理。 然而, 生成过程要么省略几何和正态, 要么使用独立程序生成 3D 形状信息 。 在本文中, 我们首次展示了能够生成高质量纹理、 形状和正常度的方法, 而这些方法可用于光现实化合成。 为此, 我们提议了一部新型的GAN, 能够通过不同方式生成数据, 并同时利用其相关性 。 此外, 我们展示了我们如何将生成的面部表达方式和面部以不同的面部表达方式作为条件。 本文所显示的质量结果因大小限制而压缩, 完整分辨率结果和所附的视频可以在补充文件中找到 。 代码和模型在 http/ ambs page. 。 am/ ambs/ ambs. pages.