Despite the rapid progress of automatic speech recognition (ASR) technologies in the past few decades, recognition of disordered speech remains a highly challenging task to date. Disordered speech presents a wide spectrum of challenges to current data intensive deep neural networks (DNNs) based ASR technologies that predominantly target normal speech. This paper presents recent research efforts at the Chinese University of Hong Kong (CUHK) to improve the performance of disordered speech recognition systems on the largest publicly available UASpeech dysarthric speech corpus. A set of novel modelling techniques including neural architectural search, data augmentation using spectra-temporal perturbation, model based speaker adaptation and cross-domain generation of visual features within an audio-visual speech recognition (AVSR) system framework were employed to address the above challenges. The combination of these techniques produced the lowest published word error rate (WER) of 25.21% on the UASpeech test set 16 dysarthric speakers, and an overall WER reduction of 5.4% absolute (17.6% relative) over the CUHK 2018 dysarthric speech recognition system featuring a 6-way DNN system combination and cross adaptation of out-of-domain normal speech data trained systems. Bayesian model adaptation further allows rapid adaptation to individual dysarthric speakers to be performed using as little as 3.06 seconds of speech. The efficacy of these techniques were further demonstrated on a CUDYS Cantonese dysarthric speech recognition task.


翻译:尽管过去几十年来自动语音识别(ASR)技术取得了快速进展,但承认无序言论仍然是迄今为止一项极具挑战性的任务。无序言论对当前数据密集的深神经网络(DNNS)基于以正常言论为主要目标的ASR技术提出了广泛的挑战。本文介绍了中国香港大学(CUHK)最近为改善现有最大公开开放的 UASpeech dysarth 语音资料库无序语音识别系统的性能而进行的研究努力。一套新颖的模拟技术包括神经建筑搜索、使用光谱-时空扰动、基于模范的扬声器改造和在视听语音识别(AVSR)框架内跨视像功能生成等一系列挑战。这些技术的结合使得在UASpeech测试中公布的最低字误差率(WER)为25.21%,16个读读者达萨勒特调调调调调音频(WERDY)总体减少了5.4%的绝对值(相对为17.6%),CHK 2018调调调调调语音识别系统以经过6路的正常语音识别系统培训的6度调整后,使DNNS系统得以迅速调整。DNURSLAUSLUSLUDUDUDLU值调整,作为正常语言数据系统,作为正常调制制制的正常调制调制的系统,作为正常调制的自动调制数据系统,作为正常调制的系统,作为正常调制的自动调制的自动调制的自动调制数据系统,作为正常调制的系统的基础,作为正常调制的系统,作为正常调制制制制制制制制制制制制制制制的系统,作为正常调制调制的系统,作为正常调制调制调制。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2020年6月8日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员