Exponential tail bounds for sums play an important role in statistics, but the example of the $t$-statistic shows that the exponential tail decay may be lost when population parameters need to be estimated from the data. However, it turns out that if Studentizing is accompanied by estimating the location parameter in a suitable way, then the $t$-statistic regains the exponential tail behavior. Motivated by this example, the paper analyzes other ways of empirically standardizing sums and establishes tail bounds that are sub-Gaussian or even closer to normal for the following settings: Standardization with Studentized contrasts for normal observations, standardization with the log likelihood ratio statistic for observations from an exponential family, and standardization via self-normalization for observations from a symmetric distribution with unknown center of symmetry. The latter standardization gives rise to a novel scan statistic for heteroscedastic data whose asymptotic power is analyzed.


翻译:数字的指数尾部边框在统计中起着重要作用,但美元-统计学的例子表明,当需要从数据中估算人口参数时,指数尾部衰减可能会消失。然而,事实证明,如果学生化的同时以适当的方式估算了位置参数,那么,美元-统计学就重新恢复了指数尾部行为。根据这个例子,本文分析了实验性地使数量标准化的其他方法,并确定了以下环境的尾部边框:正常观测与学生化对比的标准化,指数家庭观测的日志概率比的标准化,以及以未知的对称中心对称分布观测的自我标准化。后一种标准化产生了新颖的关于非典型数据的扫描统计,即分析出其随机能力。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
13+阅读 · 2021年1月18日
专知会员服务
50+阅读 · 2020年12月14日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月3日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员