We propose a novel neural network module that transforms an existing single-frame semantic segmentation model into a video semantic segmentation pipeline. In contrast to prior works, we strive towards a simple, fast, and general module that can be integrated into virtually any single-frame architecture. Our approach aggregates a rich representation of the semantic information in past frames into a memory module. Information stored in the memory is then accessed through an attention mechanism. In contrast to previous memory-based approaches, we propose a fast local attention layer, providing temporal appearance cues in the local region of prior frames. We further fuse these cues with an encoding of the current frame through a second attention-based module. The segmentation decoder processes the fused representation to predict the final semantic segmentation. We integrate our approach into two popular semantic segmentation networks: ERFNet and PSPNet. We observe an improvement in segmentation performance on Cityscapes by 1.7% and 2.1% in mIoU respectively, while increasing inference time of ERFNet by only 1.5ms.


翻译:我们提出了一个新颖的神经网络模块,将现有的单一框架语义分解模型转换成视频语义分解管道。 与先前的工程不同, 我们努力建立一个简单、 快速和通用模块, 可以融入几乎所有单一框架结构。 我们的方法将过去框架中的语义信息集中起来, 形成一个记忆模块。 存储在记忆中的信息随后通过一个关注机制获取。 与以前基于记忆的方法相比, 我们提议了一个快速的本地关注层, 在先前框架的本地区域提供时间外观提示。 我们通过第二个基于关注的模块将这些提示与当前框架的编码相融合。 分解过程将导出导出用于预测最终语义分解的导式演示过程。 我们将我们的方法整合到两个流行的语义分解网络: ERFNet 和 PSPNet。 我们观察到城市景区分化表现的改善率分别为1. 7% 和 2.1% MIOU, 同时将ERFNet的推导时间仅增加1.5米姆。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
注意力机制综述
专知会员服务
82+阅读 · 2021年1月26日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关VIP内容
注意力机制综述
专知会员服务
82+阅读 · 2021年1月26日
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
Top
微信扫码咨询专知VIP会员