Deep learning models have exhibited remarkable performance across various domains. Nevertheless, the burgeoning model sizes compel edge devices to offload a significant portion of the inference process to the cloud. While this practice offers numerous advantages, it also raises critical concerns regarding user data privacy. In scenarios where the cloud server's trustworthiness is in question, the need for a practical and adaptable method to safeguard data privacy becomes imperative. In this paper, we introduce Ensembler, an extensible framework designed to substantially increase the difficulty of conducting model inversion attacks for adversarial parties. Ensembler leverages model ensembling on the adversarial server, running in parallel with existing approaches that introduce perturbations to sensitive data during colloborative inference. Our experiments demonstrate that when combined with even basic Gaussian noise, Ensembler can effectively shield images from reconstruction attacks, achieving recognition levels that fall below human performance in some strict settings, significantly outperforming baseline methods lacking the Ensembler framework.
翻译:暂无翻译