Principal component analysis (PCA) is a fundamental technique for dimensionality reduction and denoising; however, its application to three-dimensional data with arbitrary orientations -- common in structural biology -- presents significant challenges. A naive approach requires augmenting the dataset with many rotated copies of each sample, incurring prohibitive computational costs. In this paper, we extend PCA to 3D volumetric datasets with unknown orientations by developing an efficient and principled framework for SO(3)-invariant PCA that implicitly accounts for all rotations without explicit data augmentation. By exploiting underlying algebraic structure, we demonstrate that the computation involves only the square root of the total number of covariance entries, resulting in a substantial reduction in complexity. We validate the method on real-world molecular datasets, demonstrating its effectiveness and opening up new possibilities for large-scale, high-dimensional reconstruction problems.
翻译:主成分分析(PCA)是一种用于降维和去噪的基础技术;然而,其在具有任意方向的三维数据(常见于结构生物学)中的应用面临重大挑战。一种简单方法需要对每个样本生成大量旋转副本以扩充数据集,这会导致计算成本过高。本文通过开发一种高效且原理清晰的SO(3)不变PCA框架,将PCA扩展到具有未知方向的三维体数据集,该框架能够隐式地考虑所有旋转而无需显式数据扩充。通过利用底层代数结构,我们证明了计算仅涉及协方差条目总数的平方根,从而显著降低了复杂度。我们在真实世界的分子数据集上验证了该方法,证明了其有效性,并为大规模、高维重构问题开辟了新的可能性。