This paper describes our submission to the Second Clarity Enhancement Challenge (CEC2), which consists of target speech enhancement for hearing-aid (HA) devices in noisy-reverberant environments with multiple interferers such as music and competing speakers. Our approach builds upon the powerful iterative neural/beamforming enhancement (iNeuBe) framework introduced in our recent work, and this paper extends it for target speaker extraction. We therefore name the proposed approach as iNeuBe-X, where the X stands for extraction. To address the challenges encountered in the CEC2 setting, we introduce four major novelties: (1) we extend the state-of-the-art TF-GridNet model, originally designed for monaural speaker separation, for multi-channel, causal speech enhancement, and large improvements are observed by replacing the TCNDenseNet used in iNeuBe with this new architecture; (2) we leverage a recent dual window size approach with future-frame prediction to ensure that iNueBe-X satisfies the 5 ms constraint on algorithmic latency required by CEC2; (3) we introduce a novel speaker-conditioning branch for TF-GridNet to achieve target speaker extraction; (4) we propose a fine-tuning step, where we compute an additional loss with respect to the target speaker signal compensated with the listener audiogram. Without using external data, on the official development set our best model reaches a hearing-aid speech perception index (HASPI) score of 0.942 and a scale-invariant signal-to-distortion ratio improvement (SI-SDRi) of 18.8 dB. These results are promising given the fact that the CEC2 data is extremely challenging (e.g., on the development set the mixture SI-SDR is -12.3 dB). A demo of our submitted system is available at WAVLab CEC2 demo.


翻译:本文介绍我们提交第二提高清晰度挑战(CEC2)的情况,该挑战包括:为听力援助(HA)设备在噪音反动环境中增强语音装置的目标,包括音乐和相互竞争的演讲者等多个干扰器。我们的方法以我们最近工作中引入的强大的迭代神经/波形增强(iNeube)框架为基础,本文将其扩展为目标扬声器提取。因此,我们将拟议方法命名为iNeuBe-X,其中X代表提取。为了应对CEC2设置中遇到的挑战,我们推出了四大新颖:(1) 我们扩展了最先进的TF-GridNet模型,该模型最初设计用于音频分离,用于多频道、因果语音增强和大幅改进,通过替换iNeueube中使用的TCNDENet;(2) 我们利用最近的双窗口规模方法来进行未来框架预测,以确保 iNueB-X能够满足CEC2所要求的对算法变异度的5 ms 限制;(3) 我们引入了一个新的演讲者-CR-DR-DR 目标升级部门,其中显示我们最新的音频变换的SDRADR数据。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月4日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员