The dataset described in this paper contains daily data about COVID-19 cases that occurred in Italy over the period from Jan. 28, 2020 to March 20, 2021, divided into ten age classes of the population, the first class being 0-9 years, the tenth class being 90 years and over. The dataset contains eight columns, namely: date (day), age class, number of new cases, number of newly hospitalized patients, number of patients entering intensive care, number of deceased patients, number of recovered patients, number of active infected patients. This data has been officially released for research purposes by the Italian authority for COVID-19 epidemiologic surveillance (Istituto Superiore di Sanit\`a - ISS), upon formal request by the authors, in accordance with the Ordonnance of the Chief of the Civil Protection Department n. 691 dated Aug. 4 2020. A separate file contains the numerosity of the population in each age class, according to the National Institute of Statistics (ISTAT) data of the resident population of Italy as of Jan. 2020. This data has potential use, for instance, in epidemiologic studies of the effects of the COVID-19 contagion in Italy, in mortality analysis by age class, and in the development and testing of dynamical models of the contagion.


翻译:本文件所描述的数据集包含意大利在1月28日、2020年1月至20日3月20日、2021年3月期间发生的COVID-19病例的每日数据,分为10个人口年龄组,头等为0-9岁,第十等为90岁及以上,该数据集包含八栏,即:日期(日)、年龄类别、新病例数、新住院病人人数、进入密集护理的病人人数、死亡病人人数、已康复病人人数、积极感染病人人数。意大利当局为研究目的正式公布了这一数据,以进行COVID-19流行病学监测(Septituto Superiore di Sanit ⁇ a - ISS),这是应作者的正式要求,根据公民保护部主任2020年8月4日第691号命令, 这些数据包含八栏目,即:日期(日)、年龄、新住院病人人数、死亡患者人数、已康复病人人数、活跃感染病人人数等。 这些数据可能用于意大利居民的COVI的流行性-19级的流行性死亡率分析、COVI的流行性年龄的流行性分析、COVI的流行性年龄的流行性分析。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年6月6日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员