This paper presents entropy symmetrization and high-order accurate entropy stable schemes for the relativistic magnetohydrodynamic (RMHD) equations. It is shown that the conservative RMHD equations are not symmetrizable and do not admit a thermodynamic entropy pair. To address this issue, a symmetrizable RMHD system, equipped with a convex thermodynamic entropy pair, is proposed by adding a source term into the equations, providing an analogue to the non-relativistic Godunov--Powell system. Arbitrarily high-order accurate entropy stable finite difference schemes are developed on Cartesian meshes based on the symmetrizable RMHD system. The crucial ingredients of these schemes include (i) affordable explicit entropy conservative fluxes which are technically derived through carefully selected parameter variables, (ii) a special high-order discretization of the source term in the symmetrizable RMHD system, and (iii) suitable high-order dissipative operators based on essentially non-oscillatory reconstruction to ensure the entropy stability. Several numerical tests demonstrate the accuracy and robustness of the proposed entropy stable schemes.
翻译:本文介绍了相对性磁力动力学(RMHD)方程式的精密精密酶稳定方案,表明保守的RMHD方程式不具有对称性,也不接受热力酶对子。为解决这一问题,提议在方程式中添加一个源术语,为非相对性高压-波韦尔系统提供类比。在可对称性RMHD系统的基础上,在Cartesian meshes上开发了高度精确的精密酶稳定定点差异方案。这些方案的关键组成部分包括:(一) 由精心选择的参数变量从技术上推导出的可负担的直线酶保守通量,(二) 在可对称性RMHD系统中源术语的特别高端离散化,以及(三) 基于基本稳定性RMHD系统稳定的多级稳定性测试计划,确保以可靠、稳定的数位稳定性机能测试计划为基础,建立适当的高端不紊乱操作者。