We show polynomial-time quantum algorithms for the following problems: (*) Short integer solution (SIS) problem under the infinity norm, where the public matrix is very wide, the modulus is a polynomially large prime, and the bound of infinity norm is set to be half of the modulus minus a constant. (*) Extrapolated dihedral coset problem (EDCP) with certain parameters. (*) Learning with errors (LWE) problem given LWE-like quantum states with polynomially large moduli and certain error distributions, including bounded uniform distributions and Laplace distributions. The SIS, EDCP, and LWE problems in their standard forms are as hard as solving lattice problems in the worst case. However, the variants that we can solve are not in the parameter regimes known to be as hard as solving worst-case lattice problems. Still, no classical or quantum polynomial-time algorithms were known for those variants. Our algorithms for variants of SIS and EDCP use the existing quantum reductions from those problems to LWE, or more precisely, to the problem of solving LWE given LWE-like quantum states. Our main contributions are introducing a filtering technique and solving LWE given LWE-like quantum states with interesting parameters.


翻译:我们为下列问题展示了多元时间量子算法:(*) 在无限规范下,在公共矩阵非常宽广、模量体是多球型的大质质质、而无限规范的界限定在模量值与常数的一半之间。 (*) 具有某些参数的外推异差共产问题(EDCP) 。 (*) 在类似LWE的量子体国家中,有多球型和某些差分分布,包括受约束的统一分布和 Laplace 分布的短整数解(SIS)问题。SIS、EDCP和LWE的标准形式问题与解决最坏问题一样困难。 (*) 具有某些参数的外推异差异差异差差差差差差(LWE) 。 我们的SIS和EDCP的变异差算法和LDCP的分布和LWE的标准形式问题同解决最坏的拉特球问题一样困难一样困难。然而,我们能够解决的变异差的参数体系体系体系(LWE) 将现有的量级参数削减率(LWE-WE) 问题引入了我们的主要方法。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
50+阅读 · 2020年8月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
SIGIR|乘风破浪的AI华人学者们
学术头条
4+阅读 · 2020年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关资讯
SIGIR|乘风破浪的AI华人学者们
学术头条
4+阅读 · 2020年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员