Washing hands properly and frequently is the simplest and most cost-effective interventions to prevent the spread of infectious diseases. People are often ignorant about proper handwashing in different situations and do not know if they wash hands properly. Smartwatches are found to be effective for assessing the quality of handwashing. However, the existing smartwatch based systems are not comprehensive enough in terms of achieving accuracy as well as reminding people to handwash and providing feedback to the user about the quality of handwashing. On-device processing is often required to provide real-time feedback to the user, and so it is important to develop a system that runs efficiently on low-resource devices like smartwatches. However, none of the existing systems for handwashing quality assessment are optimized for on-device processing. We present iWash, a comprehensive system for quality assessment and context-aware reminder for handwashing with real-time feedback using smartwatches. iWash is a hybrid deep neural network based system that is optimized for on-device processing to ensure high accuracy with minimal processing time and battery usage. Additionally, it is a context-aware system that detects when the user is entering home using a Bluetooth beacon and provides reminders to wash hands. iWash also offers touch-free interaction between the user and the smartwatch that minimizes the risk of germ transmission. We collected a real-life dataset and conducted extensive evaluations to demonstrate the performance of iWash. Compared to the existing handwashing quality assessment systems, we achieve around 12% higher accuracy for quality assessment, as well as we reduce the processing time and battery usage by around 37% and 10%, respectively.


翻译:正确和经常地洗手是防止传染性疾病传播的最简单和最具成本效益的干预措施。人们往往不了解不同情况下适当的洗手方法,不知道洗手是否适当。智能观察被认为对评估洗手质量有效。然而,现有的智能观察系统在达到准确性方面不够全面,也不足以提醒人们洗手和向用户提供有关洗手质量的反馈。经常需要在线设备处理向用户提供实时反馈,因此,必须开发一个系统,在像智能观察这样的低资源设备上高效运行,不知道他们是否洗手是否洗手。然而,现有的洗手质量评估系统没有一个在对洗手质量进行最佳评估。我们提供iWash,一个用于质量评估的综合性系统,在用户进入智能手表时,即用实时反馈进行洗手,iWash是一个混合的深层神经网络,通过最精密的处理和电池使用,确保高精度的处理时间和高质量。此外,我们是一个背景-认知的系统,用于在系统周围进行深度的升级,在用户进入内部的服务器时,我们也可以进行实时评估。

0
下载
关闭预览

相关内容

Reminders是一款软件,支持Win9x/Me/NT/2000/XP/2003。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
0+阅读 · 2022年1月23日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员