Kinship recognition is a challenging problem with many practical applications. With much progress and milestones having been reached after ten years - we are now able to survey the research and create new milestones. We review the public resources and data challenges that enabled and inspired many to hone-in on the views of automatic kinship recognition in the visual domain. The different tasks are described in technical terms and syntax consistent across the problem domain and the practical value of each discussed and measured. State-of-the-art methods for visual kinship recognition problems, whether to discriminate between or generate from, are examined. As part of such, we review systems proposed as part of a recent data challenge held in conjunction with the 2020 IEEE Conference on Automatic Face and Gesture Recognition. We establish a stronghold for the state of progress for the different problems in a consistent manner. This survey will serve as the central resource for the work of the next decade to build upon. For the tenth anniversary, the demo code is provided for the various kin-based tasks. Detecting relatives with visual recognition and classifying the relationship is an area with high potential for impact in research and practice.IEEE Transactions on pattern analysis and machine intelligence


翻译:承认亲子关系是一个具有挑战性的问题,有许多实际应用。随着十年后取得了许多进展和里程碑,我们现在能够对研究进行调查并创造新的里程碑。我们审查了公共资源和数据挑战,这些资源和数据挑战使许多人能够并激励他们了解视觉领域自动亲属承认的观点。不同的任务以技术术语和语法加以描述,在问题领域和每个讨论和计量的实际价值之间保持一致。审查视觉亲子承认问题的最新方法,无论是区别对待还是从中产生的问题。作为这些方法的一部分,我们审查了作为最近与2020年IEEEE自动脸和认知问题会议一起举行的数据挑战的一部分而提出的系统。我们以一致的方式为不同问题的进展状况建立了一个堡垒。这项调查将成为今后十年工作的核心资源。在十周年之际,为各种基于亲属的任务提供了《示范守则》。对有视觉识别和分类关系的亲属进行检测是研究和实践中具有很大影响的领域。IEEEEEE交易在模式分析和机器情报方面有着很大影响。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
相关论文
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员