Light field display caters to the viewer's immersive experience by providing binocular depth sensation and motion parallax. Glasses-free tensor light field display is becoming a prominent area of research in auto-stereoscopic display technology. Stacking light attenuating layers is one of the approaches to implement a light field display with a good depth of field, wide viewing angles and high resolution. This paper presents a compact and efficient representation of light field data based on scalable compression of the binary represented image layers suitable for additive layered display using a Deep Belief Network (DBN). The proposed scheme learns and optimizes the additive layer patterns using a convolutional neural network (CNN). Weighted binary images represent the optimized patterns, reducing the file size and introducing scalable encoding. The DBN further compresses the weighted binary patterns into a latent space representation followed by encoding the latent data using an h.254 codec. The proposed scheme is compared with benchmark codecs such as h.264 and h.265 and achieved competitive performance on light field data.
翻译:光场显示满足了观众的亲身体验。 光场显示通过提供望远镜深度感知和运动抛光器满足了观众的亲身体验。 无玻璃色调光场显示正在成为自动立体显示技术研究的突出领域。 堆积光减少层是实施光场显示的一种方法, 光场显示深度高, 视野宽广, 分辨率高。 本文以可缩放压缩的二进制图像层为基础, 以适合使用深视网络( DBN) 添加层显示的图像层为基础, 集中、 高效地展示光场数据。 所拟议的方案将使用进化神经网络( CNN) 学习并优化添加层模式。 轻重二进制图像代表优化模式, 缩小文件大小并引入可缩放的编码。 DBN 进一步将加权二进制模式压缩成潜伏空间代表器, 然后用 h.254 codec 将潜在数据编码进行编码。 所拟议的方案与h.264 和 h.265 和光场数据上取得的竞争性性表现进行了比较。