One of the major challenges in acoustic modelling of child speech is the rapid changes that occur in the children's articulators as they grow up, their differing growth rates and the subsequent high variability in the same age group. These high acoustic variations along with the scarcity of child speech corpora have impeded the development of a reliable speech recognition system for children. In this paper, a speaker- and age-invariant training approach based on adversarial multi-task learning is proposed. The system consists of one generator shared network that learns to generate speaker- and age-invariant features connected to three discrimination networks, for phoneme, age, and speaker. The generator network is trained to minimize the phoneme-discrimination loss and maximize the speaker- and age-discrimination losses in an adversarial multi-task learning fashion. The generator network is a Time Delay Neural Network (TDNN) architecture while the three discriminators are feed-forward networks. The system was applied to the OGI speech corpora and achieved a 13% reduction in the WER of the ASR.
翻译:儿童讲话的声学建模面临的主要挑战之一是,随着儿童成长,其动脉迅速变化,其成长速度不同,而且同一年龄组的变异性很大,这些声学差异很大,再加上儿童说话协会缺乏,阻碍了为儿童建立可靠的语音识别系统。在本文中,提出了基于对抗性多任务学习的演讲者和年龄变化式培训方法。该系统包括一个发电机共享网络,学习产生与三个歧视网络(电话、年龄和演讲者)相连的语音和年龄差异性特征。发电机网络接受培训,以尽量减少电话歧视损失,并在对抗性多任务学习时最大限度地减少语言和年龄歧视损失。发电机网络是一个时间延迟神经网络(TDNN)架构,而三名歧视者则是向前进的网络。该系统应用到OGI语库,在ASR的WER中减少了13%。