Reliable spanners can withstand huge failures, even when a linear number of vertices are deleted from the network. In case of failures, a reliable spanner may have some additional vertices for which the spanner property no longer holds, but this collateral damage is bounded by a fraction of the size of the attack. It is known that $\Omega(n\log n)$ edges are needed to achieve this strong property, where $n$ is the number of vertices in the network, even in one dimension. Constructions of reliable geometric $(1+\varepsilon)$-spanners, for $n$ points in $\Re^d$, are known, where the resulting graph has $O( n \log n \log \log^{6}n )$ edges. Here, we show randomized constructions of smaller size spanners that have the desired reliability property in expectation or with good probability. The new construction is simple, and potentially practical -- replacing a hierarchical usage of expanders (which renders the previous constructions impractical) by a simple skip-list like construction. This results in a $1$-spanner, on the line, that has linear number of edges. Using this, we present a construction of a reliable spanner in $\Re^d$ with $O( n \log \log^{2} n \log \log \log n )$ edges.


翻译:可靠的光扇可以经受巨大的失败, 即使网络中从网络中删除了线性数量的脊椎。 如果失败, 可靠的光扇可能会有一些额外的脊椎, 而这样的脊椎已经不再有, 但是这种附带损害是由攻击规模的一小部分捆绑起来的。 众所周知, 需要美元( n\ log n) 的边缘来实现这个强大的属性, 美元是网络中的脊椎数量, 即使是一个维度。 如果失败, 可靠的脊椎可能有一些额外的脊椎。 建造可靠的几何 $( 1 ⁇ varebsilon) $- spanner, $( $\ re ⁇ d$, $ $, $, $, $, 美元, 但由此得出的图表有 $( n\ log n\ log\ log\ } 6n ) 的边緣。 在这里, 我们展示了规模较小、 以期望的可靠性属性或良好的概率为单位的建筑。 新的构造非常简单, 而且可能很实用 -- 以一个简单的跳板 取代扩大行的等级使用( 使先前的建筑不切实际) $ 美元 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月9日
Arxiv
0+阅读 · 2022年6月8日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员