To make accurate inferences in an interactive setting, an agent must not confuse passive observation of events with having intervened to cause those events. The do operator formalises interventions so that we may reason about their effect. Yet there exist pareto optimal mathematical formalisms of general intelligence in an interactive setting which, presupposing no explicit representation of intervention, make maximally accurate inferences. We examine one such formalism. We show that in the absence of an operator, an intervention can still be represented by a variable. Furthermore, the need to explicitly represent interventions in advance arises only because we presuppose abstractions. The aforementioned formalism avoids this and so, initial conditions permitting, representations of relevant causal interventions will emerge through induction. These emergent abstractions function as representations of one`s self and of any other object, inasmuch as the interventions of those objects impact the satisfaction of goals. We argue (with reference to theory of mind) that this explains how one might reason about one's own identity and intent, those of others, of one`s own as perceived by others and so on. In a narrow sense this describes what it is to be aware, and is a mechanistic explanation of aspects of consciousness.


翻译:为了在互动环境中作出准确的推断,代理人不得将被动观察事件与干预造成事件混为一谈,不得混淆被动观察事件与干预导致这些事件。操作者将干预正规化,以便我们可以解释其影响。然而,在互动环境中,一般情报存在着最优的数学形式,假设没有明确的干预,则作出最准确的推断。我们审视了这种形式主义。我们发现,在没有操作者的情况下,干预仍然可以由变量来代表。此外,明确代表事先干预的必要性之所以出现,是因为我们假定了抽象性。上述形式主义避免了这一点,因此,初步条件允许,相关因果干预的表述将通过感应出现。这些新出现的抽象性作用是自我和任何其他物体的表达,因为这些物体的干预影响目标的实现。我们(参考思想理论)认为,这解释了一个人的身份和意图,其他人的身份和意图,其他人的身份和意图,等等,可能由他人所认识的,等等。从狭义的角度来描述它所意识到的方面和意识的方面。</s>

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
13+阅读 · 2022年4月30日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员