Kernelization studies polynomial-time preprocessing algorithms. Over the last 20 years, the most celebrated positive results of the field have been linear kernels for classical NP-hard graph problems on sparse graph classes. In this paper, we lift these results to the dynamic setting. As the canonical example, Alber, Fellows, and Niedermeier [J. ACM 2004] gave a linear kernel for dominating set on planar graphs. We provide the following dynamic version of their kernel: Our data structure is initialized with an $n$-vertex planar graph $G$ in $O(n \log n)$ amortized time, and, at initialization, outputs a planar graph $K$ with $\mathrm{OPT}(K) = \mathrm{OPT}(G)$ and $|K| = O(\mathrm{OPT}(G))$, where $\mathrm{OPT}(\cdot)$ denotes the size of a minimum dominating set. The graph $G$ can be updated by insertions and deletions of edges and isolated vertices in $O(\log n)$ amortized time per update, under the promise that it remains planar. After each update to $G$, the data structure outputs $O(1)$ updates to $K$, maintaining $\mathrm{OPT}(K) = \mathrm{OPT}(G)$, $|K| = O(\mathrm{OPT}(G))$, and planarity of $K$. Furthermore, we obtain similar dynamic kernelization algorithms for all problems satisfying certain conditions on (topological-)minor-free graph classes. Besides kernelization, this directly implies new dynamic constant-approximation algorithms and improvements to dynamic FPT algorithms for such problems. Our main technical contribution is a dynamic data structure for maintaining an approximately optimal protrusion decomposition of a dynamic topological-minor-free graph. Protrusion decompositions were introduced by Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, and Thilikos [J. ACM 2016], and have since developed into a part of the core toolbox in kernelization and parameterized algorithms.
翻译:核化研究多项式时间预处理算法。过去20年间,该领域最著名的积极成果是在稀疏图类上为经典NP难图问题构建的线性核。本文将这些结果提升至动态场景。作为典型示例,Alber、Fellows和Niedermeier [J. ACM 2004] 为平面图上的支配集问题提出了线性核。我们提供了其核的动态版本:我们的数据结构以$O(n \\log n)$摊还时间初始化一个包含$n$个顶点的平面图$G$,并在初始化时输出满足$\\mathrm{OPT}(K) = \\mathrm{OPT}(G)$和$|K| = O(\\mathrm{OPT}(G))$的平面图$K$,其中$\\mathrm{OPT}(\\cdot)$表示最小支配集的大小。在保证图保持平面性的前提下,可通过边和孤立顶点的插入与删除以每次更新$O(\\log n)$摊还时间更新图$G$。每次对$G$更新后,数据结构输出$O(1)$次对$K$的更新,维持$\\mathrm{OPT}(K) = \\mathrm{OPT}(G)$、$|K| = O(\\mathrm{OPT}(G))$以及$K$的平面性。此外,我们为所有满足(拓扑)次图自由图类特定条件的问题获得了类似的动态核化算法。除核化外,这直接为这类问题带来了新的动态常数近似算法以及对动态FPT算法的改进。我们的主要技术贡献是用于维护动态拓扑次图自由图的近似最优突起分解的动态数据结构。突起分解由Bodlaender、Fomin、Lokshtanov、Penninkx、Saurabh和Thilikos [J. ACM 2016] 提出,并已发展成为核化与参数化算法核心工具箱的重要组成部分。