This paper introduces anomalib, a novel library for unsupervised anomaly detection and localization. With reproducibility and modularity in mind, this open-source library provides algorithms from the literature and a set of tools to design custom anomaly detection algorithms via a plug-and-play approach. Anomalib comprises state-of-the-art anomaly detection algorithms that achieve top performance on the benchmarks and that can be used off-the-shelf. In addition, the library provides components to design custom algorithms that could be tailored towards specific needs. Additional tools, including experiment trackers, visualizers, and hyper-parameter optimizers, make it simple to design and implement anomaly detection models. The library also supports OpenVINO model optimization and quantization for real-time deployment. Overall, anomalib is an extensive library for the design, implementation, and deployment of unsupervised anomaly detection models from data to the edge.
翻译:本文介绍一个不受监督的异常探测和本地化新小图书馆 anomalib 。 这个开放源码图书馆提供文献的算法和一系列工具,通过插头和剧本方法设计自定义异常检测算法。 Anomalib 包含最先进的异常检测算法, 在基准上达到顶级性能,并且可以现成地使用。 此外, 图书馆提供组件, 设计适合特定需要的定制算法。 额外的工具, 包括实验追踪器、 视觉仪和超光谱优化器, 使得设计和实施异常检测模型变得简单。 图书馆还支持 OpenVINO 模型优化和实时部署的量化。 总体而言, anomalib 是设计、 实施和将不受监督的异常检测模型从数据边缘部署到边缘的广泛图书馆 。