We propose a multitask training method for attention-based end-to-end speech recognition models. We regularize the decoder in a listen, attend, and spell model by multitask training it on both audio-text and text-only data. Trained on the 100-hour subset of LibriSpeech, the proposed method, without requiring an additional language model, leads to an 11% relative performance improvement over the baseline and approaches the performance of language model shallow fusion on the test-clean evaluation set. We observe a similar trend on the whole 960-hour LibriSpeech training set. Analyses of different types of errors and sample output sentences demonstrate that the proposed method can incorporate language level information, suggesting its effectiveness in real-world applications.


翻译:我们为基于关注的端到端语音识别模型建议了一个多任务培训方法。 我们通过多任务培训将解码器规范成一个监听、出场和拼写模型,对它进行音频文本和纯文本数据的培训。 有关LibriSpeech100小时子集的培训,这个拟议方法不需要额外的语言模型,比基线提高了11%的相对性能,并接近了测试清洁评价集中语言模型浅质融合的性能。 我们观察到整个960小时LibriSpeech培训集的类似趋势。 对不同类型错误和样本输出句的分析表明,拟议方法可以纳入语言级信息,表明其在现实应用中的有效性。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2019年11月22日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员