Existing approaches for transporting and manipulating cable-suspended loads using multiple UAVs along reference trajectories typically rely on either centralized control architectures or reliable inter-agent communication. In this work, we propose a novel machine learning based method for decentralized kinodynamic planning that operates effectively under partial observability and without inter-agent communication. Our method leverages imitation learning to train a decentralized student policy for each UAV by imitating a centralized kinodynamic motion planner with access to privileged global observations. The student policy generates smooth trajectories using physics-informed neural networks that respect the derivative relationships in motion. During training, the student policies utilize the full trajectory generated by the teacher policy, leading to improved sample efficiency. Moreover, each student policy can be trained in under two hours on a standard laptop. We validate our method in both simulation and real-world environments to follow an agile reference trajectory, demonstrating performance comparable to that of centralized approaches.
翻译:现有利用多架无人机沿参考轨迹运输和操作缆索悬挂负载的方法,通常依赖于集中式控制架构或可靠的智能体间通信。在本工作中,我们提出了一种新颖的基于机器学习的去中心化运动动力学规划方法,该方法在部分可观测且无需智能体间通信的条件下能有效运行。我们的方法利用模仿学习,通过模仿一个能获取特权全局观测信息的集中式运动动力学运动规划器,为每架无人机训练一个去中心化的学生策略。该学生策略使用物理信息神经网络生成平滑轨迹,这些网络遵循运动中的导数关系。在训练期间,学生策略利用教师策略生成的完整轨迹,从而提高了样本效率。此外,每个学生策略可在标准笔记本电脑上于两小时内完成训练。我们在仿真和真实环境中验证了我们的方法以跟踪一条敏捷的参考轨迹,其性能可与集中式方法相媲美。