Routing strategies under the aegis of dynamic traffic assignment have been proposed in the literature to optimize system performance. However, challenges have persisted in their deployment ability and effectiveness due to inherent strong assumptions on traveler behavior and availability of network-level real-time traffic information, and the high computational burden associated with computing network-wide flows in real-time. This study proposes an incentive-based decentralized routing strategy to nudge the network performance closer to the system optimum for the context where all vehicles are connected and autonomous vehicles (CAVs). The strategy consists of three stages. The first stage incorporates a decentralized local route switching dynamical system to approximate the system optimal route flow in a local area based on vehicles' knowledge of local traffic information. The second stage optimizes the route for each CAV by considering individual heterogeneity in traveler preferences (e.g., the value of time) to maximize the utilities of all travelers in the local area. Constraints are also incorporated to ensure that these routes can achieve the approximated local system optimal flow of the first stage. The third stage leverages an expected envy-free incentive mechanism to ensure that travelers in the local area can accept the optimal routes determined in the second stage. The study analytically discusses the convergence of the local route switching dynamical system. We also show that the proposed incentive mechanism is expected individual rational and budget-balanced, which ensures that travelers are willing to participate and guarantee the balance between payments and compensations, respectively. Further, the conditions for the expected incentive compatibility of the incentive mechanism are analyzed and proved, ensuring behavioral honesty in disclosing information.


翻译:文献中提出了在动态交通派任领导下的巡回战略,以优化系统性能;然而,由于对旅行者行为和提供网络一级实时交通信息的内在强势假设,以及计算全网络实时流动的高度计算负担,在部署能力和效率方面仍然存在挑战;本研究报告提出了基于奖励的分散路线战略,以便在所有车辆连接和自主车辆的情况下,使网络业绩更接近于系统的最佳程度;战略包括三个阶段;第一阶段是分散的当地线路转换动态系统,以根据车辆对当地交通信息的了解,将系统的最佳路线流近于当地地区;第二阶段是优化每辆CAV的路线,考虑旅行者偏好(例如时间价值)的个人异质性,以最大限度地提高当地所有旅行者的水电量;还纳入了各种制约因素,以确保这些路线能够实现当地系统最接近的平稳第一阶段。第三阶段利用预期的无嫉妒性动力激励机制,以确保当地旅行者在车辆流动中达到系统的最佳路线流动;第二阶段是根据车辆对当地交通信息流流流流;第二阶段是确定最佳的预期的路线,同时在分析阶段分析阶段,确保预期的路线的进度;在分析阶段,确保预期的路线的进度的进度;在确定后,确保每个旅行的进度分析机制的进度;在分析阶段进行中,确保确定最佳的进度;在确定最佳的预期的进度;

0
下载
关闭预览

相关内容

【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
182+阅读 · 2020年7月29日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员