In the past decade, deep learning has dramatically changed the traditional hand-craft feature manner with strong feature learning capability, resulting in tremendous improvement of conventional tasks. However, deep neural networks have recently been demonstrated vulnerable to adversarial examples, a kind of malicious samples crafted by small elaborately designed noise, which mislead the DNNs to make the wrong decisions while remaining imperceptible to humans. Adversarial examples can be divided into digital adversarial attacks and physical adversarial attacks. The digital adversarial attack is mostly performed in lab environments, focusing on improving the performance of adversarial attack algorithms. In contrast, the physical adversarial attack focus on attacking the physical world deployed DNN systems, which is a more challenging task due to the complex physical environment (i.e., brightness, occlusion, and so on). Although the discrepancy between digital adversarial and physical adversarial examples is small, the physical adversarial examples have a specific design to overcome the effect of the complex physical environment. In this paper, we review the development of physical adversarial attacks in DNN-based computer vision tasks, including image recognition tasks, object detection tasks, and semantic segmentation. For the sake of completeness of the algorithm evolution, we will briefly introduce the works that do not involve the physical adversarial attack. We first present a categorization scheme to summarize the current physical adversarial attacks. Then discuss the advantages and disadvantages of the existing physical adversarial attacks and focus on the technique used to maintain the adversarial when applied into physical environment. Finally, we point out the issues of the current physical adversarial attacks to be solved and provide promising research directions.


翻译:在过去十年中,深层次的学习极大地改变了传统的手工艺特征,具有很强的特征学习能力,从而极大地改进了常规任务;然而,深层神经网络最近被证明很容易受到对抗性例子的伤害,这种恶性样品是由精心设计的微小噪音制作的,这种噪音误导了DNN作出错误的决定,同时仍然对人类不易察觉。反向例子可以分为数字对抗性攻击和人身对抗性攻击。数字对抗性攻击主要在实验室环境中进行,重点是改善对抗性攻击算法的性能。相比之下,有形对抗性攻击的重点是攻击物理世界,部署DNNN系统是一个更具挑战性的任务。由于复杂的物理环境(即亮度、隐蔽性等等),这使得DNN的物理攻击无法做出正确的决定。虽然数字对抗性攻击和人身对抗性攻击之间的差别很小,但实际对抗性攻击的例子具有具体的设计,以克服复杂的物理环境的影响。在本文件中,我们审查DNNN的对立性攻击的实际对抗性攻击的发展情况,包括图像识别任务、目标探测任务,以及目前对立性攻击的不利性研究。我们目前对立性攻击的精确性研究将用来解释。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员