Recurrent boom-and-bust cycles are a salient feature of economic and financial history. Cycles found in the data are stochastic, often highly persistent, and span substantial fractions of the sample size. We refer to such cycles as "long". In this paper, we develop a novel approach to modeling cyclical behavior specifically designed to capture long cycles. We show that existing inferential procedures may produce misleading results in the presence of long cycles, and propose a new econometric procedure for the inference on the cycle length. Our procedure is asymptotically valid regardless of the cycle length. We apply our methodology to a set of macroeconomic and financial variables for the U.S. We find evidence of long stochastic cycles in the standard business cycle variables, as well as in credit and house prices. However, we rule out the presence of stochastic cycles in asset market data. Moreover, according to our result, financial cycles as characterized by credit and house prices tend to be twice as long as business cycles.
翻译:经常繁荣和萧条周期是经济和金融历史的一个突出特征。 数据中发现的周期是随机的,往往是高度持久性的,而且覆盖了抽样规模的相当一部分。 我们把这种周期称为“长周期 ” 。 在本文中,我们开发了一种新的方法来模拟周期性行为模型,专门用来捕捉长周期。 我们表明,现有的推断程序可能会在存在长周期的情况下产生误导性结果,并为周期长度的推论提出新的经济计量程序。 我们的程序在周期长度上是完全有效的。 我们对美国的一系列宏观经济和金融变量应用了我们的方法。 我们发现,在标准商业周期变量中,以及在信贷和房价中,存在着长期的周期性周期性周期性。 但是,我们排除了资产市场数据中存在随机周期性周期性周期性的结果。 此外,根据我们的结果,以信贷和房价为特征的金融周期往往比商业周期长一倍。