In this paper, we continue a line of work on obtaining succinct population protocols for Presburger-definable predicates. More specifically, we focus on threshold predicates. These are predicates of the form $n\ge d$, where $n$ is a free variable and $d$ is a constant. For every $d$, we establish a 1-aware population protocol for this predicate with $\log_2 d + \min\{e, z\} + O(1)$ states, where $e$ (resp., $z$) is the number of $1$'s (resp., $0$'s) in the binary representation of $d$ (resp., $d - 1$). This improves upon an upper bound $4\log_2 d + O(1)$ due to Blondin et al. We also show that any 1-aware protocol for our problem must have at least $\log_2(d)$ states. This improves upon a lower bound $\log_3 d$ due to Blondin et al.
翻译:在本文中,我们继续一项工作,为Presburger可确定的上游获得简明的人口协议。更具体地说,我们侧重于临界的上游。这些是以美元为单位的上游,美元是一个免费的变量,美元是固定的。对于每美元,我们为这一上游建立一个以美元为单位的人口协议,1美元为单位的人口协议,以美元为单位(log_2 d + min ⁇ e,z ⁇ + O(1) $),以美元为单位(resp., z美元)为单位,以美元为单位,以美元为单位(resp., $0美元)为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位(resp., $- 1美元)为单位。由于Blondin等人等公司,4美元+ O(1)美元为单位的上限为4\log_2 d + O(1)美元。我们还表明,关于我们问题的任何1美元协议必须至少有1美元(log_2(d)美元为单位。由于Brondin等人公司等公司而受约束较少的美元为单位,这一数额增加。