Flying animals resort to fast, large-degree-of-freedom motion of flapping wings (i.e., their aerodynamic surfaces), a key feature that distinguishes them from rotary or fixed-winged robotic fliers with relatively limited motion of aerodynamic surfaces. However, it is well known that flapping-wing aerodynamics are characterised by highly unsteady and three-dimensional flows difficult to model or control. Accurate aerodynamic force predictions often rely on high-fidelity and expensive computational or experimental methods. Here, we developed a computationally efficient model that can accurately predict aerodynamic forces generated by 548 different flapping-wing motions, surpassing the predictive accuracy and generality of the existing quasi-steady models. Specifically, we trained a state-space model that dynamically mapped wing motion kinematics to aerodynamic forces and moments measured from a dynamically scaled robotic wing. This predictive model used as few as 12 states to successfully capture the unsteady and nonlinear fluid effects pertinent to force generation without explicit information of fluid flows. Also, we provided a comprehensive assessment of the control authority of key wing kinematic variables and their linear predictability of aerodynamic forces. We found that instantaneous aerodynamic forces/moments were largely predictable by the wing motion history within a half stroke cycle. Furthermore, the angle of attack, normal acceleration, and pitching motion had the strongest and the most instant effects on the aerodynamic force/moment generation. Our results show that flapping flight offers inherently high force control authority and predictability, which are key to the development of agile and stable aerial fliers.


翻译:飞翔动物采用快速、大度自由运动的扇翼(即其空气动力表面),这是它们与旋转或固定翼机器人飞行机流不同的关键特征,其空气动力表面的运动相对有限。然而,众所周知,拍动动动动的空气动力的特征是极不稳定和三维的流动,难以建模或控制。准确的空气动力预测往往依赖于高纤维和昂贵的计算或实验方法。在这里,我们开发了一个计算高效模型,能够准确预测由548种不同的滚动运动产生的空气动力,超过了现有准稳定模型的预测准确性和一般性。具体地说,我们训练了一个州空间模型,以动态的方式将机翼运动动力与空气动力的动态动力和三维流动体流进行模拟或控制。这个预测性模型用于成功捕捉不固定和不线状的计算或实验方法。在这里,我们开发了一个计算高效的模型,可以准确预测由548种不同的旋转翼运动运动运动运动运动运动运动运动产生的空气动力动力,我们提供了一种最稳定的空中运动运动运动/运动运动运动运动的机翼结构,我们找到了一个稳定的机极的机极的机极的机极的机极的机极的机能控制。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
4+阅读 · 2016年9月20日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员