Every automaton can be decomposed into a cascade of basic automata. This is the Prime Decomposition Theorem by Krohn and Rhodes. We show that cascades allow for describing the sample complexity of automata in terms of their components. In particular, we show that the sample complexity is linear in the number of components and the maximum complexity of a single component, modulo logarithmic factors. This opens to the possibility of learning automata representing large dynamical systems consisting of many parts interacting with each other. It is in sharp contrast with the established understanding of the sample complexity of automata, described in terms of the overall number of states and input letters, which implies that it is only possible to learn automata where the number of states is linear in the amount of data available. Instead our results show that one can learn automata with a number of states that is exponential in the amount of data available.
翻译:每个自动图都可分解成一个基本自动数据级联。 这是由克罗恩和罗兹制作的初始分解理论。 我们显示, 级联允许用其组件来描述自动数据样本的复杂性。 特别是, 我们显示, 样本的复杂性是线性, 包括组件数量和单个组件的最大复杂性, modulo对数因素。 这打开了学习由多个部分相互作用的大型动态系统组成的自动数据的可能性。 它与以状态和输入字母总数描述的对自动数据样本复杂性的既定理解形成鲜明对比, 这意味着, 只有在可用数据数量为线性的情况下, 才能学习自动数据。 相反, 我们的结果表明, 人们可以学习自动数据, 与可用数据数量指数指数化的多个状态的自动数据 。