All neuroimaging modalities have their own strengths and limitations. A current trend is toward interdisciplinary approaches that use multiple imaging methods to overcome limitations of each method in isolation. At the same time neuroimaging data is increasingly being combined with other non-imaging modalities, such as behavioral and genetic data. The data structure of many of these modalities can be expressed as time-varying multidimensional arrays (tensors), collected at different time-points on multiple subjects. Here, we consider a new approach for the study of neural correlates in the presence of tensor-valued brain images and tensor-valued predictors, where both data types are collected over the same set of time points. We propose a time-varying tensor regression model with an inherent structural composition of responses and covariates. Regression coefficients are expressed using the B-spline technique, and the basis function coefficients are estimated using CP-decomposition by minimizing a penalized loss function. We develop a varying-coefficient model for the tensor-valued regression model, where both predictors and responses are modeled as tensors. This development is a non-trivial extension of function-on-function concurrent linear models for complex and large structural data where the inherent structures are preserved. In addition to the methodological and theoretical development, the efficacy of the proposed method based on both simulated and real data analysis (e.g., the combination of eye-tracking data and functional magnetic resonance imaging (fMRI) data) is also discussed.


翻译:所有神经影像模态都有其各自的优点和局限性。当前的趋势是采用多种成像方法的跨学科方法来克服每种方法单独存在的局限性。同时,神经影像数据越来越多地与其他非成像模态(如行为和遗传数据)相结合。许多这些模态的数据结构可以表示为时间变化的多维数组(张量),在多个受试者不同的时间点收集。本文考虑了在张量值脑成像和张量值预测变量存在的情况下进行神经相关性研究的新方法。在该方法中,响应和协变量具有固有的结构组成。使用B样条技术表示回归系数,并通过最小化惩罚损失函数来估计基函数系数的CP分解。我们开发了一种针对张量值回归模型的多项式回归模型,其中预测变量和响应变量都被建模为张量。该模型是复杂和大型结构数据的函数同时线性模型的非平凡扩展,其中保留固有结构。除了方法和理论发展之外,文中还讨论了所提出的方法的有效性,基于模拟和真实数据分析(例如,眼动数据和功能性磁共振成像(fMRI)数据的组合)。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月17日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员