Distributed model predictive control (DMPC) is a flexible and scalable feedback control method applicable to a wide range of systems. While stability analysis of DMPC is quite well understood, there exist only limited implementation results for realistic applications involving distributed computation and networked communication. This article approaches formation control of mobile robots via a cooperative DMPC scheme. We discuss the implementation via decentralized optimization algorithms. To this end, we combine the alternating direction method of multipliers with decentralized sequential quadratic programming to solve the underlying optimal control problem in a decentralized fashion. Our approach only requires coupled subsystems to communicate and does not rely on a central coordinator. Our experimental results showcase the efficacy of DMPC for formation control and they demonstrate the real-time feasibility of the considered algorithms.
翻译:分布式模型预测控制(DMPC)是一种灵活和可扩缩的反馈控制方法,适用于各种系统。虽然对DMPC的稳定分析非常了解,但对于涉及分布式计算和网络通信的现实应用而言,只有有限的执行结果。这一条通过DMPC合作计划处理移动机器人的形成控制。我们通过分散化优化算法讨论执行问题。为此,我们将乘数交替方向方法与分散式连续四级编程结合起来,以分散方式解决潜在的最佳控制问题。我们的方法只是需要同时的子系统进行沟通,而不是依赖中央协调员。我们的实验结果展示了DMPC对形成控制的效率,并展示了考虑的算法的实时可行性。