Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory consumption of GAN-based SR (usually generators) causes performance degradation and more energy consumption, hindering the deployment of GAN-based SR into resource-constricted mobile devices. In this paper, we propose a novel compression framework \textbf{M}ulti-scale \textbf{F}eature \textbf{A}ggregation Net based \textbf{GAN} (MFAGAN) for reducing the memory access cost of the generator. First, to overcome the memory explosion of dense connections, we utilize a memory-efficient multi-scale feature aggregation net as the generator. Second, for faster and more stable training, our method introduces the PatchGAN discriminator. Third, to balance the student discriminator and the compressed generator, we distill both the generator and the discriminator. Finally, we perform a hardware-aware neural architecture search (NAS) to find a specialized SubGenerator for the target mobile phone. Benefiting from these improvements, the proposed MFAGAN achieves up to \textbf{8.3}$\times$ memory saving and \textbf{42.9}$\times$ computation reduction, with only minor visual quality degradation, compared with ESRGAN. Empirical studies also show $\sim$\textbf{70} milliseconds latency on Qualcomm Snapdragon 865 chipset.
翻译:模拟对抗网络(GANs)通过恢复照片现实图像,促进了单图像超分辨率(SR)的显著进步。然而,基于 GAN 的超光速(通常是发电机) 的内存消耗量高,导致性能退化和能源消耗增加,阻碍将基于 GAN 的超光速(SR) 部署到资源限制的移动设备中。在本文中,我们提议了一个新型压缩框架 \ textbf{M} 超规模\ textbf{F}Ftextb{A} 内分解网(MFAGAN) 的显著进步,用于降低发电机的内存访问成本。首先,为了克服密集连接的内存爆炸,我们使用一个记忆高效的多尺度组合网作为生成器。 其次,为了更快和更稳定的训练,我们的方法引入了 PatchGAN 歧视器。 第三,我们只将发电机和制压器调制平。 最后,我们用基于 hyal-awa 的内压结构搜索(NAS) 来找到一个专门的内径值 Q_ QARC_ 的内存的内存数据。