Sum-rank-metric codes have wide applications in universal error correction and security in multishot network, space-time coding and construction of partial-MDS codes for repair in distributed storage. Fundamental properties of sum-rank-metric codes have been studied and some explicit or probabilistic constructions of good sum-rank-metric codes have been proposed. In this paper we propose three simple constructions of explicit linear sum-rank-metric codes. In finite length regime, numerous good linear sum-rank-metric codes from our construction are given. Some of them have better parameters than previous constructed sum-rank-metric codes. For example a lot of small block size better linear sum-rank-metric codes over ${\bf F}_q$ of the matrix size $2 \times 2$ are constructed for $q=2, 3, 4$. Asymptotically our constructed sum-rank-metric codes are closing to the Gilbert-Varshamov-like bound for the sum-rank-metric codes for some parameters. Our construction also leads to one-weight or few nonzero weight linear sum-rank-metric codes with large minimum sum-rank distances. Hamming anticodes with large minimum pair distances and smaller diameters can be used to get sum-rank-metric codes with large minimum sum-rank distances.
翻译:超正数代码在全局误差校正和多发网络安全、空间时间编码和部分MDS代码修复分布式存储中部分MDS代码的建造方面应用广泛,研究了超正数代码的基本特性,并提出了一些明确或概率的好正数代码。在本文件中,我们提议了三种简单的直线和正数代码结构。在有限长度制度中,提供了我们建筑中的许多优直线和正数代码。其中一些参数比以前建造的超正数代码有更好的参数。例如,许多小块大小比基数大小2美元等于2美元等于2美元等于平方元的线性平价代码。我们建造的超正数代码正在接近Gilbert-Varsamov这样的标准。我们的建筑还比以前建造的超正数代码还好。我们建造的参数还比以前建造的超正数或少,例如,比以前建造的超正数超正数的超正数正数标准标准。例如,许多小块大小的线和最起码最短距离的最短距离的底直距的直径的直线度代码。