We consider the isomorphism problem for hypergraphs taking as input two hypergraphs over the same set of vertices $V$ and a permutation group $\Gamma$ over domain $V$, and asking whether there is a permutation $\gamma \in \Gamma$ that proves the two hypergraphs to be isomorphic. We show that for input groups, all of whose composition factors are isomorphic to a subgroup of the symmetric group on $d$ points, this problem can be solved in time $(n+m)^{O((\log d)^{c})}$ for some absolute constant $c$ where $n$ denotes the number of vertices and $m$ the number of hyperedges. In particular, this gives the currently fastest isomorphism test for hypergraphs in general. The previous best algorithm for this problem due to Schweitzer and Wiebking (STOC 2019) runs in time $n^{O(d)}m^{O(1)}$. As an application of this result, we obtain, for example, an algorithm testing isomorphism of graphs excluding $K_{3,h}$ ($h \geq 3$) as a minor in time $n^{O((\log h)^{c})}$. In particular, this gives an isomorphism test for graphs of Euler genus at most $g$ running in time $n^{O((\log g)^{c})}$.
翻译:我们认为,对于高音组来说,高音组在以美元点作为输入的两组高音中存在两个高音问题,对于一些绝对不变的美元(美元)来说,问题可以用美元(美元)和美元(美元)解决。我们询问是否有美元(gamma)和美元(美元)来表示两个高音组的变形问题。我们发现,对于输入组来说,所有组成因素都与对称组分组在美元点(美元)上的变形因素相同,对于某些绝对不变的美元(美元)来说,问题可以用美元(美元)和美元(Gamma)解决。我们问,在美元(美元)中,是否有美元(gamma)来表示两个高音数(美元)的变形数字。特别是,这使得目前对一般高音的变形测试速度最快。由于Schweitzer和Wiebking(STOC 2019),这一问题的上一个最佳算法是时间(美元) O(美元) O(美元) (美元) (O) (美元) (O) (美元) 美元) 运行时值(美元(美元) 时间(美元) 算算算(美元) (美元) (美元) (美元) (美元) (美元) (O) (美元) (美元) 的变数(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) 算算算算算算算算算算算算算算算算算算算算算算算算算算算一个特定的算一个特定的变数(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)