Popular network pruning algorithms reduce redundant information by optimizing hand-crafted models, and may cause suboptimal performance and long time in selecting filters. We innovatively introduce adaptive exemplar filters to simplify the algorithm design, resulting in an automatic and efficient pruning approach called EPruner. Inspired by the face recognition community, we use a message passing algorithm Affinity Propagation on the weight matrices to obtain an adaptive number of exemplars, which then act as the preserved filters. EPruner breaks the dependency on the training data in determining the "important" filters and allows the CPU implementation in seconds, an order of magnitude faster than GPU based SOTAs. Moreover, we show that the weights of exemplars provide a better initialization for the fine-tuning. On VGGNet-16, EPruner achieves a 76.34%-FLOPs reduction by removing 88.80% parameters, with 0.06% accuracy improvement on CIFAR-10. In ResNet-152, EPruner achieves a 65.12%-FLOPs reduction by removing 64.18% parameters, with only 0.71% top-5 accuracy loss on ILSVRC-2012. Our code can be available at https://github.com/lmbxmu/EPruner.
翻译:大众网络运行算法通过优化手工艺模型来减少冗余信息,并可能导致亚最佳性能和选择过滤器的时间长。 我们创新地引入适应性示范过滤器来简化算法设计,导致自动和高效的修剪方法,称为 EPruner 。 在面部识别界的启发下,我们在重量矩阵上使用传递信息算法Affinity propaggation, 以获得一个适应性化成像仪的数量, 然后再作为保存过滤器。 EPruner打破了在确定“重要”过滤器时对培训数据的依赖,允许在秒内执行CPU, 其规模比基于 GPU 的 SOTAs要快。 此外,我们展示了Exemplators的重量为微调提供了更好的初始化。 在 VGGNet-16 上, EPrunerner通过去除88.80%的参数,使CIFAR-10的精确度提高0.06%。 在ResNet-152 中, EPurner在确定“重要”过滤器在65.12%-FLOPs 5 % 的精确度上通过消除了我们IVLSM/