Popular network pruning algorithms reduce redundant information by optimizing hand-crafted models, and may cause suboptimal performance and long time in selecting filters. We innovatively introduce adaptive exemplar filters to simplify the algorithm design, resulting in an automatic and efficient pruning approach called EPruner. Inspired by the face recognition community, we use a message passing algorithm Affinity Propagation on the weight matrices to obtain an adaptive number of exemplars, which then act as the preserved filters. EPruner breaks the dependency on the training data in determining the "important" filters and allows the CPU implementation in seconds, an order of magnitude faster than GPU based SOTAs. Moreover, we show that the weights of exemplars provide a better initialization for the fine-tuning. On VGGNet-16, EPruner achieves a 76.34%-FLOPs reduction by removing 88.80% parameters, with 0.06% accuracy improvement on CIFAR-10. In ResNet-152, EPruner achieves a 65.12%-FLOPs reduction by removing 64.18% parameters, with only 0.71% top-5 accuracy loss on ILSVRC-2012. Our code can be available at https://github.com/lmbxmu/EPruner.


翻译:大众网络运行算法通过优化手工艺模型来减少冗余信息,并可能导致亚最佳性能和选择过滤器的时间长。 我们创新地引入适应性示范过滤器来简化算法设计,导致自动和高效的修剪方法,称为 EPruner 。 在面部识别界的启发下,我们在重量矩阵上使用传递信息算法Affinity propaggation, 以获得一个适应性化成像仪的数量, 然后再作为保存过滤器。 EPruner打破了在确定“重要”过滤器时对培训数据的依赖,允许在秒内执行CPU, 其规模比基于 GPU 的 SOTAs要快。 此外,我们展示了Exemplators的重量为微调提供了更好的初始化。 在 VGGNet-16 上, EPrunerner通过去除88.80%的参数,使CIFAR-10的精确度提高0.06%。 在ResNet-152 中, EPurner在确定“重要”过滤器在65.12%-FLOPs 5 % 的精确度上通过消除了我们IVLSM/

0
下载
关闭预览

相关内容

Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
BERT 瘦身之路:Distillation,Quantization,Pruning
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
8+阅读 · 2020年10月9日
Arxiv
5+阅读 · 2020年3月16日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员