In this work we present a novel second order accurate well balanced (WB) finite volume (FV) scheme for the solution of the general relativistic magnetohydrodynamics (GRMHD) equations and the first order CCZ4 formulation (FO-CCZ4) of the Einstein field equations of general relativity, as well as the fully coupled FO-CCZ4 + GRMHD system. These systems of first order hyperbolic PDEs allow to study the dynamics of the matter and the dynamics of the space-time according to the theory of general relativity. The new well balanced finite volume scheme presented here exploits the knowledge of an equilibrium solution of interest when integrating the conservative fluxes, the nonconservative products and the algebraic source terms, and also when performing the piecewise linear data reconstruction. This results in a rather simple modification of the underlying second order FV scheme, which, however, being able to cancel numerical errors committed with respect to the equilibrium component of the numerical solution, substantially improves the accuracy and long-time stability of the numerical scheme when simulating small perturbations of stationary equilibria. In particular, the need for well balanced techniques appears to be more and more crucial as the applications increase their complexity. We close the paper with a series of numerical tests of increasing difficulty, where we study the evolution of small perturbations of accretion problems and stable TOV neutron stars. Our results show that the well balancing significantly improves the long-time stability of the finite volume scheme compared to a standard one.


翻译:在这项工作中,我们提出了一个新颖的第二顺序、准确的平衡(WB)有限量(FV)计划,用于解决一般相对磁力动力学(GRMHD)等方程式和爱因斯坦领域一般相对性等方程式的第一级CCZ4配方(FO-CCZ4),以及完全结合的FO-CCZ4+GRMHD系统。这些一阶双曲式PDE系统允许根据一般相对论理论研究物质动态和时空动态。在这里提出的新的平衡量制计划,在将保守通量、非保守产品和代数源术语结合在一起时,以及在进行整形线性数据重建时,利用一种均衡性均衡的平衡性解决方案的知识。这导致对FV方案基础的第二阶梯进行相当简单的修改,然而,它能够消除在数字解决方案的平衡部分方面造成的数字错误,大大改进了数字制系的准确性和长期稳定性。在模拟小宽度小的过量性调整时,比小的低度、非保守性产品和代数源值的公式的平衡性条件,从而显示我们稳定度的精确性测测测测得更加精确的精确的精确性。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年10月11日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年10月11日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员