Visual question answering (VQA) is one of the crucial vision-and-language tasks. Yet, the bulk of research until recently has focused only on the English language due to the lack of appropriate evaluation resources. Previous work on cross-lingual VQA has reported poor zero-shot transfer performance of current multilingual multimodal Transformers and large gaps to monolingual performance, attributed mostly to misalignment of text embeddings between the source and target languages, without providing any additional deeper analyses. In this work, we delve deeper and address different aspects of cross-lingual VQA holistically, aiming to understand the impact of input data, fine-tuning and evaluation regimes, and interactions between the two modalities in cross-lingual setups. 1) We tackle low transfer performance via novel methods that substantially reduce the gap to monolingual English performance, yielding +10 accuracy points over existing transfer methods. 2) We study and dissect cross-lingual VQA across different question types of varying complexity, across different multilingual multi-modal Transformers, and in zero-shot and few-shot scenarios. 3) We further conduct extensive analyses on modality biases in training data and models, aimed to further understand why zero-shot performance gaps remain for some question types and languages. We hope that the novel methods and detailed analyses will guide further progress in multilingual VQA.


翻译:视觉问题解答(VQA)是关键的愿景和语言任务之一。然而,由于缺少适当的评价资源,直到最近为止的大部分研究只侧重于英语语言,而以前关于跨语言语言的VQA的工作报告说,目前多语言多式联运变异器的零弹传输性能差,而且单语化表现存在巨大差距,主要原因是源与目标语言之间的文本嵌入不协调,而没有提供任何进一步的更深入的分析。在这项工作中,我们更深入地研究并处理跨语言的VQA的不同方面,目的是了解投入数据、微调和评价制度以及两种模式在跨语言组合中互动的影响。 (1) 我们通过新颖的方法处理低传异性工作,将差距大大缩小到英语单语化,使现有的传输方法达到+10的准确点。(2) 我们研究不同复杂程度不同的问题类型,跨越不同的多种语言的多式变异变异器,并在零弹决和几发的情景中处理。(3) 我们进一步广泛分析培训数据和模型中的模式偏差,通过新颖的方法处理低的转移性业绩,目的是进一步理解五语言的零弹道分析。

0
下载
关闭预览

相关内容

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
15+阅读 · 2021年11月19日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员