Communication networks are used today everywhere and on every scale: starting from small Internet of Things (IoT) networks at home, via campus and enterprise networks, and up to tier-one networks of Internet providers. Accordingly, network devices should support a plethora of tasks with highly heterogeneous characteristics in terms of processing time, bandwidth energy consumption, deadlines and so on. Evaluating these characteristics and the amount of currently available resources for handling them requires analyzing all the arriving inputs, gathering information from numerous remote devices, and integrating all this information. Performing all these tasks in real time is very challenging in today's networking environments, which are characterized by tight bounds on the latency, and always-increasing data rates. Hence, network algorithms should typically make decisions under uncertainty. This work addresses optimizing performance in heterogeneous and uncertain networking environments. We begin by detailing the sources of heterogeneity and uncertainty and show that uncertainty appears in all layers of network design, including the time required to perform a task; the amount of available resources; and the expected gain from successfully completing a task. Next, we survey current solutions and show their limitations. Based on these insights we develop general design concepts to tackle heterogeneity and uncertainty, and then use these concepts to design practical algorithms. For each of our algorithms, we provide rigorous mathematical analysis, thus showing worst-case performance guarantees. Finally, we implement and run the suggested algorithms on various input traces, thus obtaining further insights as to our algorithmic design principles.


翻译:通信网络今天在各地和各种规模上都使用:从小的互联网(IoT)网络开始,通过校园和企业网络,到互联网提供者的一级网络。因此,网络装置应支持大量任务,在处理时间、带宽能源消耗、最后期限等方面,这些特点和处理这些特点的现有资源数量要求分析所有抵达的投入,从许多远程设备收集信息,并整合所有这些信息。在当今的网络环境中,实时执行所有这些任务非常困难,其特点是内嵌性、以及数据率的不断提高。因此,网络算法通常应在不确定的情况下作出决定。这项工作涉及在复杂和不确定的网络环境中优化业绩。我们首先详细说明异质性和不确定性的来源,并表明在网络设计的各个层次上都存在不确定性,包括执行任务所需的时间;可用资源的数量;以及成功完成一项任务带来的预期收益。随后,我们调查当前的解决方案并展示其局限性。根据这些深刻的洞察力,我们发展了最差的设计概念,从而解决了这些不确定性和不确定性。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey of Robot Manipulation in Contact
Arxiv
0+阅读 · 2021年12月3日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
34+阅读 · 2019年11月7日
Arxiv
10+阅读 · 2018年2月9日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员