Threat modeling plays a critical role in the identification and mitigation of security risks; however, manual approaches are often labor intensive and prone to error. This paper investigates the automation of software threat modeling through the clustering of call graphs using density-based and community detection algorithms, followed by an analysis of the threats associated with the identified clusters. The proposed method was evaluated through a case study of the Splunk Forwarder Operator (SFO), wherein selected clustering metrics were applied to the software's call graph to assess pertinent code-density security weaknesses. The results demonstrate the viability of the approach and underscore its potential to facilitate systematic threat assessment. This work contributes to the advancement of scalable, semi-automated threat modeling frameworks tailored for modern cloud-native environments.
翻译:暂无翻译