Topological methods are very rarely used in structural health monitoring (SHM), or indeed in structural dynamics generally, especially when considering the structure and topology of observed data. Topological methods can provide a way of proposing new metrics and methods of scrutinising data, that otherwise may be overlooked. In this work, a method of quantifying the shape of data, via a topic called topological data analysis will be introduced. The main tool within topological data analysis is persistent homology. Persistent homology is a method of quantifying the shape of data over a range of length scales. The required background and a method of computing persistent homology is briefly introduced here. Ideas from topological data analysis are applied to a Z24 Bridge case study, to scrutinise different data partitions, classified by the conditions at which the data were collected. A metric, from topological data analysis, is used to compare between the partitions. The results presented demonstrate that the presence of damage alters the manifold shape more significantly than the effects present from temperature.
翻译:在结构健康监测(SHM)或结构动态中很少使用地形方法,特别是在考虑观察到的数据的结构和地形时,尤其是考虑到观测到的数据的结构和地形时,通常很少使用地形方法。地形方法可以提供一种方法,提出新的衡量标准和审查数据的方法,否则可能会被忽视。在这项工作中,将采用一种方法,通过一个称为地形数据分析的专题来量化数据形状。在地形数据分析中,主要工具是持久性同质性。持久性同质性是量化一系列长度尺度数据形状的方法。此处将简要介绍所需的背景和计算持久性同质性的方法。从地形数据分析中得出的概念应用于Z24大桥案例研究,按照数据收集的条件分类,对不同的数据分区进行仔细分析。从地形数据分析中得出的一种衡量方法,用来比较各种分区之间的差别。所显示的损害的存在比温度的影响更显著地改变了多重形状。