User-generated content is full of misspellings. Rather than being just random noise, we hypothesise that many misspellings contain hidden semantics that can be leveraged for language understanding tasks. This paper presents a fine-grained annotated corpus of misspelling in Thai, together with an analysis of misspelling intention and its possible semantics to get a better understanding of the misspelling patterns observed in the corpus. In addition, we introduce two approaches to incorporate the semantics of misspelling: Misspelling Average Embedding (MAE) and Misspelling Semantic Tokens (MST). Experiments on a sentiment analysis task confirm our overall hypothesis: additional semantics from misspelling can boost the micro F1 score up to 0.4-2%, while blindly normalising misspelling is harmful and suboptimal.
翻译:用户生成的内容充满了拼写错误。 我们假设许多拼写错误包含隐藏的语义, 可用于语言理解任务。 本文展示了泰国语拼写错误的精细图, 并分析了拼写错误的意图及其可能的语义, 以便更好地了解在文体中观察到的拼写错误模式。 此外, 我们引入了两种方法, 以纳入拼写错误的语义: 拼写错误平均嵌入( MAE) 和拼写语语语调( MST) 。 对情绪分析任务进行的实验证实了我们的总体假设: 从拼写错误中增加的语义可以将微F1的评分提高到0. 4-2 %, 而盲目地使拼写错误正常化是有害和次优的。