In this paper, we develop an impairments-aware air-to-ground unified channel model that incorporates the effect of both wobbling and hardware impairments, where the former is caused by random physical fluctuations of unmanned aerial vehicles (UAVs), and the latter by intrinsic radio frequency (RF) nonidealities at both the transmitter and receiver, such as phase noise, in-phase/quadrature (I/Q) imbalance, and power amplifier (PA) nonlinearity. The impact of UAV wobbling is modeled by two stochastic processes, i.e., the canonical Wiener process and the more realistic sinusoidal process. On the other hand, the aggregate impact of all hardware impairments is modeled as two multiplicative and additive distortion noise processes, which is a well-accepted model. For the sake of generality, we consider both wide-sense stationary (WSS) and nonstationary processes for the distortion noises. We then rigorously characterize the autocorrelation function (ACF) of the wireless channel, using which we provide a comprehensive analysis of four key channel-related metrics: (i) power delay profile (PDP), (ii) coherence time, (iii) coherence bandwidth, and (iv) power spectral density (PSD) of the distortion-plus-noise process. Furthermore, we evaluate these metrics with reasonable UAV wobbling and hardware impairment models to obtain useful insights. Quite noticeably, we demonstrate that even for small UAV wobbling, the coherence time severely degrades at high frequencies, which renders air-to-ground channel estimation very difficult at these frequencies. To the best of our understanding, this is the first work that characterizes the joint impact of UAV wobbling and hardware impairments on the air-to-ground wireless channel.


翻译:在本文中,我们开发了一种有缺陷的空气到地面统一信道模型,该模型既包括扭曲和硬件损伤的效果,前者是由无人驾驶航空飞行器(UAVs)随机物理波动造成的,而后者则由发射机和接收机的内在无线电频率(RF)非理想性作用,如阶段噪声、阶段/阶段(I/Q)偏差和电量放大器(PA)非线性。UAV振荡的影响由两个有帮助的直径进程模拟,即坎尼利维纳进程和更为现实的正统性对等。另一方面,所有硬件损伤的总体影响都以两个多复制性和添加性失音过程为模型,这是一个广为接受的模式。为了一般起见,我们既考虑宽度的静态(USS),也考虑这些扭曲噪音的非静态过程。我们随后严格地将无线频道的软直位(ACF)直径直径,我们用它来提供最精确的频率、高清晰度(MAL) 和高清晰度的电路路路路路段(RO) 的硬度(ROD) 度(我们用来) 和直径(ROD) 的直径) 的直径) 的硬度分析。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员