Collaborative robots are expected to be able to work alongside humans and in some cases directly replace existing human workers, thus effectively responding to rapid assembly line changes. Current methods for programming contact-rich tasks, especially in heavily constrained space, tend to be fairly inefficient. Therefore, faster and more intuitive approaches to robot teaching are urgently required. This work focuses on combining visual servoing based learning from demonstration (LfD) and force-based learning by exploration (LbE), to enable fast and intuitive programming of contact-rich tasks with minimal user effort required. Two learning approaches were developed and integrated into a framework, and one relying on human to robot motion mapping (the visual servoing approach) and one on force-based reinforcement learning. The developed framework implements the non-contact demonstration teaching method based on visual servoing approach and optimizes the demonstrated robot target positions according to the detected contact state. The framework has been compared with two most commonly used baseline techniques, pendant-based teaching and hand-guiding teaching. The efficiency and reliability of the framework have been validated through comparison experiments involving the teaching and execution of contact-rich tasks. The framework proposed in this paper has performed the best in terms of teaching time, execution success rate, risk of damage, and ease of use.


翻译:预计协作机器人能够与人类并肩工作,在某些情况下可以直接取代现有的人类工人,从而有效地应对快速的组装线变化。目前用于规划接触丰富任务的方法,特别是在严重受限的空间,往往相当低效。因此,迫切需要对机器人教学采取更快和更直观的方法。这项工作的重点是结合从演示(LfD)和通过探索(LbE)的武力学习(LbE)的视觉悬念学习,以便能够用最起码的用户努力快速和直观地规划接触丰富的任务。两种学习方法已经发展并纳入一个框架,一种是依靠人到机器人运动的绘图(视觉助推法),另一种是依靠人到机器人的强化学习。已开发的框架以视觉悬浮法为基础,采用非接触示范教学方法,并根据探测到的接触状态优化所显示的机器人目标位置。框架与两种最常用的基线技术,即笔记式教学和手牵式教学进行了比较。框架的效率和可靠性已经通过比较性实验得到验证,一种是依靠人到机器人运动图象(视觉助方法)和以力量为基础的强化学习学习学习学习方法。开发了非接触示范方法。拟议成功框架,在方便执行中,在文件上实现了。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
242+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
162+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员