We propose Bayesian nonparametric Weibull delegate racing (WDR) for survival analysis with competing events and achieve both model interpretability and flexibility. Utilizing a natural mechanism of surviving competing events, we assume a race among a potentially infinite number of sub-events. In doing this, WDR accommodates nonlinear covariate effects with no need of data transformation. Moreover, WDR is able to handle left truncation, time-varying covariates, different types of censoring, and missing event times or types. We develop an efficient MCMC algorithm based on Gibbs sampling for Bayesian inference and provide an \texttt{R} package. Synthetic data analysis and comparison with benchmark approaches demonstrate WDR's outstanding performance and parsimonious nonlinear modeling capacity. In addition, we analyze two real data sets and showcase advantages of WDR. Specifically, we study time to death of three types of lymphoma and show the potential of WDR in modeling nonlinear covariate effects and discovering new diseases. We also use WDR to investigate the age at onset of mild cognitive impairment and interpret the accelerating or decelerating effects of biomarkers on the progression of Alzheimer's disease.
翻译:我们提议巴伊西亚非参数性 Weibull 代表赛(WDR), 以对相竞事件进行生存分析, 并实现模型解释性和灵活性。 利用在相竞事件中幸存的自然机制, 我们假设在潜在无限的次活动中进行竞争。 在这样做时, WDR 容纳非线性共变效应, 不需要数据转换。 此外, WDR 能够处理左曲、 时间变化的共变、 不同类型的审查、 以及失踪事件的时间或类型。 我们根据对巴伊西亚感知的Gibs抽样开发高效的MC MC 算法, 并提供 \ textt{R} 软件包。 合成数据分析以及与基准方法的比较, 展示了WDR的杰出性能和超线性非线性建模能力。 此外, 我们分析两个真实的数据集并展示了WDRDR的优势。 具体地说, 我们研究三种淋病死亡的时间, 并展示WDR在模拟非线性共变效应和发现新疾病方面的潜力。 我们还使用WDRDR在开始对温度认知障碍变变变变变变变变的时代进行时间和变换。