In this paper, we consider some aspects of the numerical analysis of the mathematical model of fractional Duffing with a derivative of variable fractional order of the Riemann-Liouville type. Using numerical methods: an explicit finite-difference scheme based on the Grunwald-Letnikov and Adams-Bashford-Moulton approximations (predictor-corrector), the proposed numerical model is found. These methods have been verified with a test case. It is shown that the predictor-corrector method has a faster convergence than the method according to the explicit finite-difference scheme. For these schemes, using Runge's rule, estimates of the computational accuracy were made, which tended to unity with an increase in the number of calculated grid nodes.
翻译:在本文中,我们考虑了对分解与Riemann-Liouville型可变分数顺序衍生物的分数式数学模型的数学分析的数值分析的某些方面。使用数字方法:根据Grunwald-Letnikov和Adams-Bashford-Moulton近似(前置校正者-纠正者-Moulton),根据拟议的数字模型,对计算准确性进行了明确的有限选择。这些方法已经用一个测试案例加以验证。可以证明预测者-更正者方法比根据明确的有限偏差方法的方法的趋同速度要快。对于这些方法,使用Runge的规则,对计算准确性进行了估计,这种估计与计算网格节点数量的增加趋于一致。