Belief and plausibility are weaker measures of uncertainty than that of probability. They are motivated by the situations when full probabilistic information is not available. However, information can also be contradictory. Therefore, the framework of classical logic is not necessarily the most adequate. Belnap-Dunn logic was introduced to reason about incomplete and contradictory information. Klein et al and Bilkova et al generalize the notion of probability measures and belief functions to Belnap-Dunn logic, respectively. In this article, we study how to update belief functions with new pieces of information. We present a first approach via a frame semantics of Belnap-Dunn logic.
翻译:信仰和可信度是比概率更弱的不确定性衡量标准,其动机是没有完全概率信息的情况,但是,信息也可能是矛盾的,因此,经典逻辑的框架不一定是最充分的。贝尔纳普-杜恩逻辑是为了解释不完整和相互矛盾的信息而引入的。克莱因等人和比尔科娃等人分别将概率计量和信仰功能的概念概括为贝尔纳普-杜恩逻辑。我们在本篇文章中研究如何用新信息来更新信仰功能。我们通过贝纳普-杜恩逻辑的框架语义提出了第一种方法。