"What-if" questions are intuitively generated and commonly asked during the design process. Engineers and architects need to inherently conduct design decisions, progressing from one phase to another. They either use empirical domain experience, simulations, or data-driven methods to acquire consequential feedback. We take an example from an interdisciplinary domain of energy-efficient building design to argue that the current methods for decision support have limitations or deficiencies in four aspects: parametric independency identification, gaps in integrating knowledge-based and data-driven approaches, less explicit model interpretation, and ambiguous decision support boundaries. In this study, we first clarify the nature of dynamic experience in individuals and constant principal knowledge in design. Subsequently, we introduce causal inference into the domain. A four-step process is proposed to discover and analyze parametric dependencies in a mathematically rigorous and computationally efficient manner by identifying the causal diagram with interventions. The causal diagram provides a nexus for integrating domain knowledge with data-driven methods, providing interpretability and testability against the domain experience within the design space. Extracting causal structures from the data is close to the nature design reasoning process. As an illustration, we applied the properties of the proposed estimators through simulations. The paper concludes with a feasibility study demonstrating the proposed framework's realization.


翻译:工程师和建筑师需要从一个阶段到另一个阶段内在地进行设计决定,从一个阶段发展到另一个阶段。他们要么使用经验领域经验、模拟,要么以数据驱动的方法获得相应的反馈。我们从一个节能建筑设计跨学科领域举一个例子,指出目前决策支持方法在四个方面有局限性或缺陷:参数依赖性识别、知识基础和数据驱动方法整合方面的差距、模型解释不够明确,以及决定支持界限模糊。在本研究中,我们首先澄清个人动态经验的性质和设计方面经常掌握的主要知识。随后,我们将因果推断引入这个领域。我们建议采用一个四步过程,通过数学上严格和计算效率高的方式发现和分析参数依赖性,方法是确定因果图和干预措施之间的因果关系。因果图为将域知识与数据驱动方法相结合、提供可解释性和可测试性与设计空间的域经验提供了联系。从数据中提取因果关系结构与自然设计推理过程密切相关。随后,我们提出一个四步进程,即从数学上严格和计算分析参数,我们通过模拟了拟议的实现框架。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员