In Gaussian graphical models, the likelihood equations must typically be solved iteratively, for example by iterative proportional scaling. However, this method may not scale well to models with many variables because it involves repeated inversion of large matrices. We present a version of the algorithm which avoids these inversions, resulting in increased speed, in particular when graphs are sparse.


翻译:在高西亚图形模型中,可能性方程式通常必须反复解答,例如,通过迭代比例缩放。然而,这种方法可能不适宜与许多变量的模型相适应,因为它涉及大型矩阵的反复反转。我们提出了一个避免这些反转的算法版本,导致速度加快,特别是当图表稀少时。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
64+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
4+阅读 · 2017年11月1日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月19日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
4+阅读 · 2017年11月1日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2022年2月19日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
9+阅读 · 2018年1月4日
Top
微信扫码咨询专知VIP会员