We study the parameterized complexity of various classic vertex deletion problems such as Odd cycle transversal, Vertex planarization, and Chordal vertex deletion under hybrid parameterizations. Existing FPT algorithms for these problems either focus on the parameterization by solution size, detecting solutions of size $k$ in time $f(k) \cdot n^{O(1)}$, or width parameterizations, finding arbitrarily large optimal solutions in time $f(w) \cdot n^{O(1)}$ for some width measure $w$ like treewidth. We unify these lines of research by presenting FPT algorithms for parameterizations that can simultaneously be arbitrarily much smaller than the solution size and the treewidth. We consider two classes of parameterizations which are relaxations of either treedepth of treewidth. They are related to graph decompositions in which subgraphs that belong to a target class H (e.g., bipartite or planar) are considered simple. First, we present a framework for computing approximately optimal decompositions for miscellaneous classes H. Namely, if the cost of an optimal decomposition is $k$, we show how to find a decomposition of cost $k^{O(1)}$ in time $f(k) \cdot n^{O(1)}$. Secondly, we exploit the constructed decompositions for solving vertex-deletion problems by extending ideas from algorithms using iterative compression and the finite state property. For the three mentioned vertex-deletion problems, and all problems which can be formulated as hitting a finite set of connected forbidden (a) minors or (b) (induced) subgraphs, we obtain FPT algorithms with respect to both studied parameterizations.
翻译:我们研究各种典型的顶点删除问题的参数复杂性, 如奥德周期跨度、 Vertex 平面化和Chordal 顶点在混合参数化下删除。 这些问题的现有 FPT 算法要么以参数化为焦点, 以溶解大小为焦点, 探寻美元( k)\ cdot n ⁇ O(1)} 美元或宽度参数化的解决方案, 在时间( w)\ cdot n ⁇ (1)} 找到任意的大型最佳解决方案, 某些宽度测量值( 如树宽度) $w美元、 Vertex 平面化和 Chordald。 首先, 我们提出一个框架, 用FPT 算法进行参数化的参数化算法, 这些算法可能任意地大大小于溶液尺寸和树宽度。 我们考虑两种参数化的参数化方法, 与树宽度或宽度( ) 平面值化的图解算法( 例如, 直径) 直径( 或平面) 直径( 直径) 直径化( 直径) 直径) 直径化( 直径化( 直) 直系) 直系( 直系) 直系( 直系) 直系( 直系) 直系) 直系) 。 首先, 我们提出一个框架, 直系- 直系( 直系( 直系) 直系) 。