In the realm of wireless communications in 5G, 6G and beyond, deploying unmanned aerial vehicle (UAV) has been an innovative approach to extend the coverage area due to its easy deployment. Moreover, reconfigurable intelligent surface (RIS) has also emerged as a new paradigm with the goals of enhancing the average sum-rate as well as energy efficiency. By combining these attractive features, an energy-efficient RIS-mounted multiple UAVs (aerial RISs: ARISs) assisted downlink communication system is studied. Due to the obstruction, user equipments (UEs) can have a poor line of sight to communicate with the base station (BS). To solve this, multiple ARISs are implemented to assist the communication between the BS and UEs. Then, the joint optimization problem of deployment of ARIS, ARIS reflective elements on/off states, phase shift, and power control of the multiple ARISs-assisted communication system is formulated. The problem is challenging to solve since it is mixed-integer, non-convex, and NP-hard. To overcome this, it is decomposed into three sub-problems. Afterwards, successive convex approximation (SCA), actor-critic proximal policy optimization (AC-PPO), and whale optimization algorithm (WOA) are employed to solve these sub-problems alternatively. Finally, extensive simulation results have been generated to illustrate the efficacy of our proposed algorithms.
翻译:在5G、6G和5G以上无线通信领域,部署无人驾驶飞行器(无人驾驶飞行器)由于部署方便,是扩大覆盖面的创新办法;此外,由于部署方便,因此部署无人驾驶飞行器(无人驾驶飞行器)是扩大覆盖面的创新办法;此外,重新配置智能表面(智能表面)也作为一种新范例出现,目的是提高平均总和率和能源效率;通过结合这些有吸引力的特征,正在研究一个节能的、高能效的多重无人驾驶飞行器(航空RISS:ARISS)辅助下行连接通信系统;由于存在障碍,用户设备(UIS)与基地站(BS)之间联系的视线很差;为了解决这一问题,还实施了多种智能表面智能表面(IRIS)作为新的模式,目的是提高平均和能效;随后,通过部署AIRIS、ARIS反映要素、阶段转移和多度辅助通信系统的电源控制等共同优化问题正在形成,因为所提出的问题是难以解决的,因为它是混合的、非编码的和NP-硬的。要克服这一点,要克服这一点,它就已经使BS-RO-RO-RO-RO-MA-MA-SBU(其最终最佳化为最佳政策下级) 。